Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(6): e2305913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059822

ABSTRACT

Surgical removal of the thyroid gland (TG) for treating thyroid disorders leaves the patients on lifelong hormone replacement that partially compensates the physiological needs, but regenerating TG is challenging. Here, an approach is reported to regenerate TG within the spleen for fully restoring the thyroid's functions in mice, by transplanting thyroid tissue blocks to the spleen. Within 48 h, the transplanted tissue efficiently revascularizes, forming thyroid follicles similar to the native gland after 4 weeks. Structurally, the ectopically generated thyroid integrates with the surrounding splenic tissue while maintaining its integrity, separate from the lymphatic tissue. Functionally, it fully restores the native functions of the TG in hormone regulation in response to physiological stimuli, outperforming the established method of oral levothyroxine therapy in maintaining systemic homeostasis. The study demonstrates the full restoration of thyroid functions post-thyroidectomy by intrasplenic TG regeneration, providing fresh insights for designing novel therapies for thyroid-related disorders.


Subject(s)
Thyroid Neoplasms , Thyroidectomy , Humans , Animals , Mice , Thyroidectomy/methods , Thyroid Neoplasms/surgery , Spleen/surgery , Regeneration , Hormones
2.
Protein Expr Purif ; 208-209: 106278, 2023 08.
Article in English | MEDLINE | ID: mdl-37094772

ABSTRACT

MMP-2 has been reported as the most validated target for cancer progression and deserves further investigation. However, due to the lack of methods for obtaining large amounts of highly purified and bioactive MMP-2, identifying specific substrates and developing specific inhibitors of MMP-2 remains extremely difficult. In this study, the DNA fragment coding for pro-MMP-2 was inserted into plasmid pET28a in an oriented manner, and the resulting recombinant protein was effectively expressed and led to accumulation as inclusion bodies in E. coli. This protein was easy to purify to near homogeneity by the combination of common inclusion bodies purification procedure and cold ethanol fractionation. Then, our results of gelatin zymography and fluorometric assay revealed that pro-MMP-2 at least partially restored its natural structure and enzymatic activity after renaturation. We obtained approximately 11 mg refolded pro-MMP-2 protein from 1 L LB broth, which was higher than other strategies previously reported. In conclusion, a simple and cost-effective procedure for obtaining high amounts of functional MMP-2 was developed, which would contribute to the progress of studies on the gamut of biological action of this important proteinase. Furthermore, our protocol should be appropriate for the expression, purification, and refolding of other bacterial toxic proteins.


Subject(s)
Escherichia coli , Matrix Metalloproteinase 2 , Escherichia coli/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/chemistry , Recombinant Proteins/chemistry , Bacterial Proteins/metabolism , Inclusion Bodies/chemistry , Protein Folding , Protein Refolding
3.
Nanoscale ; 12(6): 3637-3645, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32016263

ABSTRACT

Recently, the discovery and development of lead-free perovskite quantum dots (QDs) that are eco-friendly and stable has become an active research area in low-cost lighting and display fields. However, the low photoluminescence quantum yield (PLQY) caused by the residual surface states of such QDs severely hinders their practical applications and commercialization. In this work, a strategy of employing water-induced nanocomposites was proposed to improve the PLQY of cesium bismuth halide (Cs3Bi2X9) QDs, and a substantial enhancement by ∼130% (from 20.2% to 46.4%) was achieved by an optimized water treatment of Cs3Bi2Br9 QDs. A detailed analysis indicated that Cs3Bi2Br9/BiOBr nanocomposites, in which the Cs3Bi2Br9 QD core was encapsulated into a BiOBr matrix, can effectively suppress the surface defects of QDs, resulting in a longer PL lifetime and a larger exciton binding energy compared with the pristine sample. Finally, the Cs3Bi2Br9/BiOBr nanocomposites were used as the color-converting phosphors for down-conversion white light-emitting devices, which show a good operation stability in ambient air, significantly better than the reference device constructed with conventional lead-halide perovskites. We believe that the method used here provides an effective strategy to improve the fluorescence efficiency of lead-free perovskite QDs, which will create opportunities for their applications in lighting and displays.

4.
Front Cell Dev Biol ; 8: 601521, 2020.
Article in English | MEDLINE | ID: mdl-33681182

ABSTRACT

Hyperlipidemia, an important risk factor for cardiovascular and end-stage renal diseases, often aggravates renal injury and compromises kidney function. Here, histological analysis of human kidney samples revealed that high lipid levels induced the development of renal fibrosis. To elucidate the mechanism underlying lipid nephrotoxicity, we used two types of mouse models (Apoe-/- and C57BL/6 mice fed a 45 and 60% high-fat diet, respectively). Histological analysis of kidney tissues revealed high-lipid-induced renal fibrosis and inflammation; this was confirmed by examining fibrotic and inflammatory marker expression using Western blotting and real-time polymerase chain reaction. Oxidized low-density lipoprotein (OX-LDL) significantly induced the fibrotic response in HK-2 tubular epithelial cells. RNA-sequencing and Gene Ontology analysis of differentially expressed mRNAs in OX-LDL-treated HK-2 tubular epithelial cells and real-time PCR validation in Apoe-/- mice showed that the expression of thrombospondin-1 (THBS1) in the high-fat group was significantly higher than that of the other top known genes, along with significant overexpression of its receptor CD47. THBS1 knockdown cells verified its relation to OX-LDL-induced fibrosis and inflammation. Liquid chromatography tandem mass spectrometry and STRING functional protein association network analyses predicted that THBS1/CD47 modulated the interaction between γ-catenin and E-cadherin and was involved in epithelial-mesenchymal transition, which was supported by immunoprecipitation and immunohistochemistry. CD47 downregulation following transfection with small-hairpin RNA in OX-LDL-treated tubular epithelial cells and treatment with anti-CD47 antibody restored the expression of E-cadherin and attenuated renal injury, fibrosis, and inflammatory response in OX-LDL-treated cells and in type 2 diabetes mellitus. These findings indicate that CD47 may serve as a potential therapeutic target in long-term lipid-induced kidney injury.

5.
ACS Appl Mater Interfaces ; 9(37): 31458-31468, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28838233

ABSTRACT

Intraorgan targeting of chemical drugs at tumor tissues is essential in the treatment of solid tumors that express the same target receptor as normal tissues. Here, asialoglycoprotein receptor (ASGP-R)-targeting paclitaxel-conjugated gold nanoparticles (Gal/PTX-GNPs) are fabricated as a demonstration to realize the precise treatment of liver cancer. The enhanced biological specificity and therapeutic performance of drugs loaded on nanoparticles not only rely on the ligands on carriers for receptor recognition but are also determined by the performance of gold conjugates with designed structure. The tumor cell selectivity of the designed conjugates in liver tumor (HepG2) cells is close to six times of that incubated with control conjugates without galactose modification in liver normal (L02) cells. The drug level in tumor versus liver of Gal/PTX-GNPs is 121.0% at 8 h post injection, a 15.7-fold increase in the tumor specificity compared to that of GNPs conjugated with PTX only. This intraorgan-targeting strategy results in a considerable improvement of performance in treating both Heps heterotopic and orthotopic xenograft tumor models, which is expected to be used for the enhanced antitumor efficacy and reduced hepatotoxicity in liver cancer treatment.


Subject(s)
Gold , Drug Carriers , Hep G2 Cells , Humans , Liver Neoplasms , Metal Nanoparticles , Nanoparticles , Paclitaxel
6.
Cell Physiol Biochem ; 35(5): 1892-904, 2015.
Article in English | MEDLINE | ID: mdl-25871529

ABSTRACT

BACKGROUND: Increasing evidence indicates that long noncoding RNAs (IncRNAs) perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in ß cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic ß cell functioning both in vitro and in vivo. METHODS: qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. RESULTS: lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in ß cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. CONCLUSION: Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic ß cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic ß cells.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , RNA, Long Noncoding/metabolism , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Down-Regulation , Glucose/pharmacology , Insulin Secretion , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Pancreas/metabolism , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism
7.
World J Gastroenterol ; 20(22): 6884-96, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24944479

ABSTRACT

AIM: To investigate the effect of mesothelin in the remodeling of the endocrine pancreas in neonatal rats. METHODS: Overexpression or downregulation of mesothelin expression in INS-1 cells was carried out to investigate the effect of mesothelin during cell proliferation and cell apoptosis in vitro. Adenovirus-mediated RNA interference was performed to block mesothelin in vivo to directly assess the role of mesothelin in the remodeling of the endocrine pancreas in neonatal rats. RESULTS: Exogenous overexpression of mesothelin promoted cell proliferation, cell colony formation and enhanced cell resistance to apoptosis of INS-1 cells. Down-regulation of mesothelin made no difference in cell proliferation and apoptosis compared with that in the control group. After an injection of adenovirus-mesothelin, a significantly increased number of small islets appeared, and the expression of PCNA was decreased on day 7 and day 14 compared with the Ad-EGFP group. CONCLUSION: Mesothelin was able to promote ß cell proliferation in the remodeling stage of neonatal rats. Mesothelin may have an important role in the remodeling of the endocrine pancreas in neonatal rats.


Subject(s)
Cell Proliferation , GPI-Linked Proteins/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Animals , Animals, Newborn , Apoptosis , Cell Line, Tumor , Female , GPI-Linked Proteins/genetics , Gene Expression Regulation , Islets of Langerhans/growth & development , Mesothelin , Pregnancy , RNA Interference , Rats, Sprague-Dawley , Signal Transduction , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...